Solve each problem. - 1) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $\frac{1}{3}$ full. How many baskets of lemons would you need to fill up the entire cup? - A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug? - An old potato outputs $\frac{1}{2}$ of a volt of electricty, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb? - Katie was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $\frac{1}{3}$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl? - A bag of grass seeds weighed $\frac{1}{2}$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn? - 6) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool? - A dejuicer was able to squeeze a pint of juice from $\frac{1}{2}$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug? - 8) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students? - It takes a baker $\frac{1}{2}$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box? - A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box? | Δ | n | C | w | Δ | r | C | |------------------|---|---|---|---|---|---| | \boldsymbol{H} | П | 2 | w | c | L | 3 | 1. _____ 2 3. _____ 4. 5. _____ 6. _____ 7. _____ 8. _____ 9. _____ 10. _____ ## Solve each problem. - A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $\frac{1}{3}$ full. How many baskets of lemons would you need to fill up the entire cup? - A discount bottle of perfume was $\frac{1}{2}$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug? - An old potato outputs $\frac{1}{2}$ of a volt of electricity, which is $\frac{1}{3}$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb? - 4) Katie was using a container to fill up a fishbowl. The container held $\frac{1}{2}$ of a gallon of water and filled $\frac{1}{3}$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl? - A bag of grass seeds weighed $\frac{1}{2}$ of a kilogram. That was enough to cover $\frac{1}{3}$ of a front lawn with seed. How many bags would it take to completely cover a lawn? - A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool? - A dejuicer was able to squeeze a pint of juice from $\frac{1}{2}$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug? - 8) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students? - It takes a baker $\frac{1}{2}$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box? - A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box? | Answe | rs | |-------|----| - 3 baskets - 3 bottles - 3. **3 potatoes** - 4. 3 containers - 5. **3 bags** - $_{6.}$ 1 $\frac{1}{2}$ hours - $_{7.}$ 1 $\frac{1}{2}$ bags - 3 bags - $_{9.}$ 1 $\frac{1}{2}$ hours - $1^{1/2}$ seconds