Solve each problem.

1) A basket of lemons weighed $1 / 2$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
2) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
3) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
4) Katie was using a container to fill up a fishbowl. The container held $1 / 2$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
5) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
6) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
7) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug?
8) A bag of chocolate mix that weighed $1 / 2$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
9) It takes a baker $\frac{1}{2}$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?
10) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $1 / 3$ of a box. At this rate, how long would it take the machine to fill the entire box?

Solve each problem.

1) A basket of lemons weighed $\frac{1}{2}$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
2) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $\frac{1}{3}$ of a jug. How many bottles of perfume would you need to fill the entire jug?
3) An old potato outputs $1 / 2$ of a volt of electricty, which is $1 / 3$ the amount of power needed for a small lightbulb. How many potatoes would you need to power the lightbulb?
4) Katie was using a container to fill up a fishbowl. The container held $1 / 2$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
5) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
6) A water hose had filled up $\frac{1}{3}$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
7) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $\frac{1}{3}$ of a jug. At this rate, how many bags will it take to fill the entire jug?
8) A bag of chocolate mix that weighed $1 / 2$ of a kilogram could make enough brownies to feed $\frac{1}{3}$ of the students at school. How many bags would be needed to feed all of the students?
9) It takes a baker $\frac{1}{2}$ of an hour to make enough cookies to fill $\frac{1}{3}$ of large box. How long would it take him to fill the whole box?
10) A pencil making machine took $\frac{1}{2}$ of a second to make enough pencils to fill $\frac{1}{3}$ of a box. At this rate, how long would it take the machine to fill the entire box?

Answers

1. \qquad
2. \qquad
3. \qquad
3 containers
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
$1 / 2$ seconds
9. \qquad
